本文共 3770 字,大约阅读时间需要 12 分钟。
XX酒店的老板想成为酒店之王,本着这种希望,第一步要将酒店变得人性化。由于很多来住店的旅客有自己喜好的房间色调、阳光等,也有自己所爱的菜,但是该酒店只有p间房间,一天只有固定的q道不同的菜。
有一天来了n个客人,每个客人说出了自己喜欢哪些房间,喜欢哪道菜。但是很不幸,可能做不到让所有顾客满意(满意的条件是住进喜欢的房间,吃到喜欢的菜)。
这里要怎么分配,能使最多顾客满意呢?
第一行给出三个正整数表示n,p,q(<=100)。
之后n行,每行p个数包含0或1,第i个数表示喜不喜欢第i个房间(1表示喜欢,0表示不喜欢)。
之后n行,每行q个数,表示喜不喜欢第i道菜。
最大的顾客满意数。
2 2 21 01 01 11 1
1 最大流; 建边,将人拆成两个点 p1,p2; 首先由源点向每道菜连容量为1的边, 每个房间向汇点连容量为1的边; 然后每个人的 p1 与他喜欢的菜连容量为1的边,p1与p2连容量为1的边,p2与他喜欢的房间连容量为1的边; 然后 dinic 跑一遍最大流即可;
#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include //#pragma GCC optimize("O3")using namespace std;#define maxn 200005#define inf 0x3f3f3f3f#define INF 9999999999#define rdint(x) scanf("%d",&x)#define rdllt(x) scanf("%lld",&x)#define rdult(x) scanf("%lu",&x)#define rdlf(x) scanf("%lf",&x)#define rdstr(x) scanf("%s",x)typedef long long ll;typedef unsigned long long ull;typedef unsigned int U;#define ms(x) memset((x),0,sizeof(x))const long long int mod = 1e9 + 7;#define Mod 1000000000#define sq(x) (x)*(x)#define eps 1e-3typedef pair pii;#define pi acos(-1.0)const int N = 1005;#define REP(i,n) for(int i=0;i<(n);i++)typedef pair pii;inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == '-') f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x;}ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b);}ll sqr(ll x) { return x * x; }/*ll ans;ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans;}*/ll qpow(ll a, ll b, ll c) { ll ans = 1; a = a % c; while (b) { if (b % 2)ans = ans * a%c; b /= 2; a = a * a%c; } return ans;}int n, p, q;bool vis[maxn];int x, y, f, z;struct node { int to, nxt, val, u;}edge[maxn << 2];int head[maxn], cnt;void addedge(int u, int v, int w) { edge[cnt].u = u; edge[cnt].to = v; edge[cnt].val = w; edge[cnt].nxt = head[u]; head[u] = cnt++;}int st, ed, rk[maxn];int bfs() { queue qq; ms(rk); rk[st] = 1; qq.push(st); while (!qq.empty()) { int tmp = qq.front(); qq.pop(); for (int i = head[tmp]; i != -1; i = edge[i].nxt) { int to = edge[i].to; if (rk[to] || edge[i].val <= 0)continue; rk[to] = rk[tmp] + 1; qq.push(to); } } return rk[ed];}int dfs(int u, int flow) { if (u == ed)return flow; int add = 0; for (int i = head[u]; i != -1 && add < flow; i = edge[i].nxt) { int v = edge[i].to; if (rk[v] != rk[u] + 1 || !edge[i].val)continue; int tmpadd = dfs(v, min(edge[i].val, flow - add)); if (!tmpadd) { rk[v] = -1; continue; } edge[i].val -= tmpadd; edge[i ^ 1].val += tmpadd; add += tmpadd; } return add;}int ans;void dinic() { while (bfs())ans += dfs(st, inf);}int main(){ //ios::sync_with_stdio(0); memset(head, -1, sizeof(head)); cnt = 0; rdint(n); rdint(p); rdint(q); st = p + q + 2 * n + 1; ed = st + 1; for (int i = 1; i <= p; i++)addedge(st, i, 1), addedge(i, st, 0); for (int i = 1; i <= n; i++) { for (int j = 1; j <= p; j++) { int x; rdint(x); if (x == 1) { addedge(p + i, j, 0); addedge(j, p + i, 1); } } } for (int i = 1; i <= n; i++) { for (int j = 1; j <= q; j++) { int x; rdint(x); if (x == 1) { addedge(p + q + i + n, p + j + n, 1); addedge(p + j + n, p + q + i + n, 0); } } } for (int i = p + 1 + n; i <= p + n + q; i++) { addedge(i, ed, 1); addedge(ed, i, 0); } for (int i = 1; i <= n; i++) addedge(p + i, p + q + i + n, 1), addedge(p + q + i + n, p + i, 0); dinic(); cout << ans << endl; return 0;}
转载于:https://www.cnblogs.com/zxyqzy/p/9981354.html